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Abstract
Concern about the reproducibility and reliability of biomedical research has
been rising. An understudied issue is the prevalence of sample mislabeling,
one impact of which would be invalid comparisons. We studied this issue in a
corpus of human transcriptomics studies by comparing the provided
annotations of sex to the expression levels of sex-specific genes. We identified
apparent mislabeled samples in 46% of the datasets studied, yielding a 99%
confidence lower-bound estimate for all studies of 33%. In a separate analysis
of a set of datasets concerning a single cohort of subjects, 2/4 had mislabeled
samples, indicating laboratory mix-ups rather than data recording errors. While
the number of mixed-up samples per study was generally small, because our
method can only identify a subset of potential mix-ups, our estimate is
conservative for the breadth of the problem. Our findings emphasize the need
for more stringent sample tracking, and that re-users of published data must be
alert to the possibility of annotation and labelling errors.
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Introduction
Recent years have seen an increase in concern about the quality 
of scientific research, along with efforts to improve reliability and 
reproducibility1,2. These issues are highly relevant to genomics 
studies, which deal with complex and often weak signals measured 
genome-wide. In transcriptomics studies (our focus here), mRNA 
is extracted from samples and processed using microarrays or 
RNA-seq, followed by statistical analysis to identify patterns of 
interest (e.g. differential expression). Much work has been done to 
raise awareness of technical issues in such studies such as RNA 
quality3 and batch effects4 and many investigators are aware of 
the need to address them5. Alongside, a great effort was put into 
establishing guidelines for annotation standards of expression data 
into public repositories6.

A key step in many scientific experiments, which has received less 
attention, is the importance of maintaining an accurate correspond-
ence between the experimental conditions or sources of the samples 
and the eventual data. Simply put, for the analysis to be valid, the 
samples must not be mixed up. If mix-ups are present but undetec-
ted, the conclusions of the analysis might be affected and pollute 
the literature, as well as create a lurking problem for those who 
re-use the data.

The obviousness of the need to avoid mix-ups suggests that inves-
tigators should be well aware of the risk, and take steps to reduce 
it, such as careful bookkeeping (e.g., permanent sample tube labels 
matched to data files). However, we recently became concerned that 
mix-ups might not be rare. Our concerns came to a head when we 
reanalyzed four publically available datasets of Parkinson’s disease 
subjects7. As part of our quality checks of the data, we examined 
expression levels of sex-specific genes (genes expressed only in 
males or in females), and compared these with the correspond-
ing subject sex meta-data annotations from each of the papers. To  
our surprise, we found discordance between the sex predicted based 
on expression levels of sex-specific genes and the manuscript- 
annotated sex in two out of the four datasets7 (Supplementary  
Figure S1). This finding, and other anecdotal observations, led us  
to examine this issue more broadly.

Sex-specific genes are well-suited for this purpose. In genetics stud-
ies, genotypes of the sex chromosome are routinely used to identify 
mislabeled samples8,9, moreover, sex check is a built-in option for 
some of the dedicated software10. Given that genetic abnormalities 
resulting in disagreement between genotypic and phenotypic sex 
are rare11, any disagreements are very likely to stem from errors and 
may also be indicative of other dataset quality issues. Using such 
genes for quality checks of transcriptome data is not widespread 
practice, but it is well known that several X- and Y-linked genes 
show sex-specific patterns of expression. A limitation of this 
approach is that mix-ups that do not yield conflicting sex labels 

(e.g., swapping two female samples) cannot be detected. But at the 
very least the sex-specific-gene-based approach can provide a lower 
bound for the amount of mix-ups and if any are detected it should 
trigger a reassessment of the tracking of all samples in the study.

In this study, we focused on publically available human expression 
profiling experiments that included individuals of both sexes. To 
our surprise, we found strong evidence of mix-ups in nearly half 
of them. Importantly, for the vast majority of the studies we were 
able to validate that the disagreement between metadata- and gene-
based sex is prevalent in the original manuscript. This indicates 
that the disagreements are not a result of erroneous sex descrip-
tion during data submission to public repository. An additional 
10% of the studies have samples of ambiguous gene-based sex, 
suggesting the possibility of samples being mistakenly combined 
or other quality problems. While it is possible that a small number 
of the cases we identify are due to sex chromosome abnormalities, 
we regard the most likely explanation for most to be laboratory  
mix-ups or errors in the meta-data annotations. Our findings 
suggest a widespread quality control issue in transcriptomics 
studies.

Methods
Except where mentioned, data analysis was performed using the  
R/Bioconductor environment12,13. Source code for the analysis 
is available in a Github repository (https://github.com/min110/
mislabeled.samples.identification). The archived version of the 
code at the time of publication can be accessed through Zenodo  
mislabeled.samples.identification: doi:10.5281/zenodo.60313.

We identified datasets containing sex information as experimen-
tal factors by searching the Gemma database14. Out of an initial 
121 datasets we focused on 79 studies run on the Affymetrix  
HG-U1333Plus_2 and HG-U133A platforms as they have the same 
sex marker genes (GEO platform identifiers GPL570 and GPL96 
respectively). The annotations in Gemma, which originate from 
GEO sample descriptions augmented with manual annotation, were 
re-checked against GEO, resulting in the correction of errors for 
14 samples. Datasets that contained samples of only one sex, rep-
resented data from sex-specific tissues (e.g. ovary or testicle) or 
contained numerous missing values were excluded (nine datasets). 
A final set of 70 studies (a total of 4160 samples) met the crite-
ria. Table 1 summarizes the data included and full details of each 
study are in Supplementary Table S1. Whenever possible, data were  
reanalyzed from .CEL files. The signals were summarized using 
RMA method from the Affymetrix “power tools” (http://media.
affymetrix.com/partners_programs/programs/developer/tools/pow-
ertools.affx), log

2
 transformed and quantile normalized as part of the 

general Gemma pre-processing pipeline.

Probeset selection: The male-specific genes KDM5D and RPS4Y1 
are represented by a single probeset on both platforms included in 
our analysis. XIST is represented by two probesets on the GPL96 
platform and by seven probesets on the GPL570 platform. With 
the exception of the 221728_x_at probeset, XIST probesets were 
highly correlated with each other, and negatively correlated with 
the KDM5D and RPS4Y1 expression in all of the datasets analyzed 
(Supplementary Figure S3). The poor-performing XIST probeset 
(221728_x_at) was excluded from further analysis. The final set 
was four probesets for GPL96 and eight probesets for GPL570.

            Amendments from Version 1

As noted by Hans van Bokhoven, in the original version the the 
number of studies with mislabelled samples was incorrectly 
indicated in the text as “31” instead of “32”. This is now corrected. 

See referee reports

REVISED
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Assigning gene-based (biological) sex to samples: The expres-
sion data for the selected sex markers were extracted from the nor-
malized data for each dataset. For each of these small expression  
matrices, we applied standard k-means clustering (using the 
“kmeans” function from the “stats” package in R15 to classify the 
samples into two clusters. We assigned the two clusters as “male” 
or “female”, based on the centroid values of each of the probesets: 
specifically, the cluster with higher values of the XIST probesets 
centroids and a lower value of KDM5D and RPS4Y1 centroids was 
assigned as a “female” cluster. To identify samples with ambigu-
ous sex, we calculated the difference between the median expres-
sion level of the XIST probesets and the median expression level of 
the KDM5D and RPS4Y1 probesets. We compared this difference 
with the cluster-based gender, and validated that the difference is 
positive for samples assigned as females and negative for samples 
assigned as males. We excluded 34 samples that showed disagree-
ment in this comparison since they could not provide a conclusive 
result for the gene—expression-based sex. We note that 12 (35%) 
of these would have been assigned to a cluster contradicting their 
annotated sex if we had retained them.

Manual validation of the discrepancy between the gene-based 
sex and the meta-data-based sex: For all the cases where a dis-
crepancy was found between the gene-expression-based sex and the 
meta-data-based sex, we manually examined the original studies to 
check if the mismatch was due to incorrect annotation of the sam-
ple during the data upload to GEO, or was present in the original 
paper. Since most of the manuscripts only contain summary sta-
tistics of the demographic data (13/32, Supplementary Table S2), 
direct sample-by-sample validation was not possible for most stud-
ies. For these studies we used the highest resolution level of group 
summary statistics, provided in the publication to validate that the 
data in the paper corroborate the data in GEO. In addition, for all of 
the datasets with mismatched samples, we manually evaluated the 
expression values of the relevant probesets using the GEO2R tool 
on the GEO website.

Confidence interval estimate for population proportion of stud-
ies with misannotated samples: We used the properties of the 
binomial distribution to compute the confidence interval for the 
population estimate of affected data sets using the “qbinom” func-
tion in R.

Analysis of Stanley Foundation datasets: CEL files and sam-
ple metadata were downloaded directly from the Stanley Medical 
Research Institute genomic database (https://www.stanleygenom-
ics.org/stanley/). CEL files were pre-processed, quantile normal-
ized and log

2
 transformed using the rma function from the “affy” 

package in R Bioconductor12,13.

Results
We identified a corpus of 70 human gene expression studies that 
had sample sex annotation (4160 samples in total) run on two  
platforms. We developed a simple robust method for classifying 
samples by sex based on three sex specific genes – XIST, RPS4Y1 
and KDM5D. XIST (X-inactive specific transcript) is expressed 
from the inactive X chromosome and acts to silence its expression 
and thus, is only expressed in female subjects. KDM5D (Lysine 
(K)-Specific Demethylase 5D) and RPS4Y1 (Ribosomal Protein S4, 
Y-Linked 1) are both located on the Y chromosome, and thus are 
only expressed in male subjects. Although additional sex-specific 
genes exist, we determined that KDM5D, RPS4Y1 and XIST are the 
only sex-specific genes consistently showing high expression levels 
in the associated sex in all tissues. Our method assigns a predicted 
sex based on gene expression to each sample, which we refer to 
as “gene-based sex” (see Methods). We also performed a second 
analysis to identify samples where a gene-based sex could not be  
confidently assigned. Such samples might reflect technical prob-
lems, but could also be due to true biological effects; for example, 
XIST expression is altered in some cancers and in early stages of 
development16. We then compared gene-based sex to the sex accord-
ing to the provided sample annotations (“meta-data-based sex”) for 
the 70 studies, seeking samples with disagreements. Figure 1 shows 
examples of studies with no discrepant samples (1A) and with  
discrepancies (1B). Similar plots for all datasets analyzed are 
shown in Supplementary Figure S2. All calls of discrepant or 
ambiguous sex were followed by manual confirmation.

We found samples with a discrepancy between the meta-data sex 
information and the gene-based sex in 32/70 (46%) of the datasets 
(ambiguous samples excluded; summarized in Table 1; details 
in Supplementary Table S2). Although datasets containing mis-
matched samples were more prevalent among cancer datasets 
(53% vs 44%, cancer vs. non-cancer, respectively), the propor-
tion of mismatched samples was similar in cancer and non-cancer 

Table 1. Summary of discrepancies between the gene expression-based and annotated sex in human 
microarray datasets. Unclassified samples are samples with disagreement between their classification 
using k-means clustering and the median expression of the sex specific probesets. Datasets were 
considered as “correctly annotated” only if they did not contain mismatched or unclassified samples. Eight 
of the datasets contained both mismatched samples and unclassified samples.

All Datasets Non-cancer 
Datasets

Cancer 
Datasets All Samples Non-cancer 

Samples
Cancer 
Samples

Correctly annotated 31 (44%) 29 (53%) 2 (13%) 4043 (97%) 2868 (98%) 1175 (96%)

Mismatched 32 (46%) 24 (44%) 8 (53%) 83 (2%) 58 (1.97%) 25 (2.04%)

Unclassified 15 (21%) 7 (13%) 8 (53%) 34 (0.8%) 11 (0.4%) 23 (1.9%)

Total 70 55 15 4160 2937 1223
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Figure 1. Representative plots showing expression levels of sex-specific probesets. Expression level of probesets representing the XIST 
(red), KDM5D (black) and RPS4Y1 (blue) genes. “MetaFemale” and “MetaMale” indicate the meta-data annotated sex of the samples and 
their total number in brackets. The “M” and “F” along the X axis indicates the gene-based sex of the samples, as determined by k-means 
clustering. Log2-transformed expression levels are plotted. (a) Representative dataset with no mismatched samples. (b) Representative 
dataset with two mismatched samples (highlighted with grey bars). Gene-based sex that contradicts the annotated sex of the sample is 
highlighted in bold at bottom.

samples (2.04% vs 1.97%; Table 1). This discrepancy might 
be explained by on average higher number of samples in cancer 
datasets from our corpus (Supplementary Table S1). As expected, 
the proportion of samples with ambiguous gene-based sex was 
much higher in cancer as compared to non-cancer samples: 23/1223 
(1.97%) in cancer vs. 11/2937 (0.4%; Table 1). In total, 34 sam-
ples were flagged as ambiguous, though we note that 12/34 (35%)  
would have been signed to the discrepant sex by our method. 
Ambiguous samples were found in 15/70 (21%) of the studies 
(eight of which also contained mismatched samples).

Because the sex annotations we used to this point were obtained 
from the sample descriptions in GEO, there was a possibility that 
the discrepancies we identified were due to mistakes introduced 
during the communication of the data from the submitter to GEO. 
If this was the case, the results in the original publication (29/32 
of the affected studies had an associated publication) would be 
unaffected, though users of the GEO data would still be affected. 
To check this possibility, we went back to the 29 original publi-
cations to see if the sex labels provided in the paper matched 
those in GEO (detailed in Supplementary Table S2). This check 
was not always possible because many publications did not pro-
vide detailed meta-data in the paper or Supplementary materials; 
GEO provides the only record. In 12/29 cases, sufficient detail was 
provided for us to confirm that the discrepant sex labels were 
present in the publication, and in all of them there was agreement 

between the meta-data in the publication and the meta-data in 
GEO. In 13 cases only summaries were given in the publication 
(e.g. “10 males and nine females in group X”). In 10 of these 13 
studies, the summary counts in the publication agree with GEO. 
In the other three, both GEO and gene-based totals disagree with 
the publication-based totals. In other words, there seems to have 
been miscommunication with GEO in addition to a sex annotation 
discrepancy in the original study report. Finally, for four datasets 
meta-data was not provided or ambiguously described in the paper. 
We failed to find any unambiguous case in which we would infer 
the only problem was a miscommunication with GEO.

The analysis presented cannot distinguish between actual sam-
ple mix-ups (e.g., tube swaps) and errors in the meta-data (incor-
rect recording of the subject’s sex). Fortuitously, we identified 
data sets where it can be determined that at least in some cases, 
samples were probably physically mixed up. In addition to the 70 
datasets used above, we analyzed four datasets that all used human 
brain RNA from the same collection of subjects (Stanley Medical 
Research Institute, Array Collection, https://www.stanleygenom-
ics.org/stanley/). In this case the meta-data is common across the 
four laboratories since they are all analyzing the same individuals 
(though not all studies analyzed all the individuals). If the meta-
data is incorrect, then all of the studies should show discrepancies 
for the same samples. If the samples were mixed up in a particular 
laboratory (or by the sample provider at the time they were sent to 
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the laboratory), each study would have different discrepancies. We 
found that out of the four available datasets with data corresponding 
to the same subjects, two datasets contained mismatched samples  
(a single mismatched sample was identified in the “AltarA” 
study, and five in the “Dobrin” study; Figure 2). Importantly, the  
mismatched subjects differed between the datasets and samples 
from the same subjects appeared as correctly annotated in the other 
datasets. This suggests that the mismatched cases are likely to  
represent mislabeled samples rather than mistakes taking place 
during the recording of the subjects’ sex.

We were surprised that nearly 50% of studies had at least one labe-
ling error, and were concerned that this might be an overestimate 
by chance, due to sampling error. To address this we computed 
confidence intervals for our estimate of the fraction of affected 
studies, yielding a 95%-confident lower bound of 36% and a 99% 
lower bound of 33% (upper confidence bounds were 56% and 60% 
respectively). We also note that our independent observations of  
2/4 datasets containing misannotations described in Santiago  
et al.17 and in 2/4 of the Stanley data set are in agreement with a 
relatively high estimate. Thus we project that, with 99% certainty, if 

Figure 2. Gene-based and metadata-based sex in four datasets of similar subjects from Stanley Array collection. The heatmap 
represents z-transformed expression values of KDM5D, RPS4Y1 and XIST probeset in four datasets of microarray data from Stanley Array 
Collection cohort of subjects. The datasets are designated - Study1 AltarA, Study3 Bahn, Study5 Dobrin, Study7 Kato, in correspondence 
to their names on the Stanley collection site. Each column represents a subject and each raw represents a probeset. The four studies are 
represented on the left color bar on the side of the heatmap. The gene names corresponding to each probeset are shown by the right color bar 
on the side of the heatmap. Three of the studies – AltarA, Bahn and Kato were performed on the GPL96 platform on which XIST is represented 
by two probesets. The Dobrin dataset is on the GPL570 platform containing additional 5 XIST probesets, one of which was removed from the 
analysis. The annotated sex of each subject (metadata gender) is represented by the top color bar (females – pink, males – purple). Missing 
samples (samples that were excluded from the original studies) are shown in grey. Arrows point to the mismatched samples.
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all expression studies in GEO could be checked for mix-ups based 
on sex-specific genes, the fraction affected would be at least 33%.

Discussion
Using a simple approach to compare sample annotations for sex 
to expression patterns, we found that nearly 50% of datasets we 
checked contain at least one discrepancy. Our findings are also in 
general agreement with another study that examined this issue in a 
cohort of predominantly cancer datasets18, although in cancer there 
is an expectation of more ambiguity of sex marker expression16. 
In the case of the Stanley brain datasets, we could determine that 
the problem is likely to stem from laboratory mix-ups rather than 
an error in recording the subject’s sex. While our analysis is limited 
to a corpus of studies where sex information was available along 
with the presence of good markers on the microarray platform, our 
data suggest a widespread problem.

What is the impact of this issue? Viewed optimistically, a single 
mixed-up sample is not likely to dramatically affect the conclu-
sions of a well-powered study. In addition, our analysis suggests 
a lower (99% confident) estimate of “only” 33% of studies with 
a sex mislabeling, which might provide a small amount of com-
fort to optimists – it could be worse. However, the sample mis-
labeling we identified might be the tip of the iceberg, because  
sex-specific genes can only reveal mixed-up samples with differing 
sex. We also suggest that sample mix-ups might correlate with other 
quality problems. Indeed, many of the misannotated datasets we 
found have additional issues such as undocumented batch effects, 
outlier samples, other apparent sample misannotations (not 
sex-related), and discordance in sample descriptions reported in 
different parts of the relevant publication (Supplementary Table S2). 
The presence of samples with ambiguous gene-based sex in non-
cancer samples is suggestive of even more quality problems. This is 
because expression patterns of sex-specific genes could be treated 
as a positive quality control for the expression data as a whole, serv-
ing as indicators for the reliability of other gene signals. Devia-
tions from the expected pattern might indicate samples were mixed 
together, or suggest problems with RNA quality.

Our conclusions are two-fold. First, there is an alarming degree of 
apparent mislabeling of samples in the transcriptomics literature. In 

at least the specific cases we identified, the trust in the reliability of 
the findings reported is certainly not improved. Second, because it 
is simple to check the expression patterns of sex markers, the tests 
we performed should become a routine part of all omics studies 
where sex can be inferred from the data.
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Figure S1. Disagreement between gene-based and annotated sex in three datasets participating in the metaanalysis of Parkinson’s 
disease1,2. Santiago and Potashkin included four datasets in their metaanalysis. When available (three out of the four datasets) we used 
sample characteristics provided in the associated manuscripts to identify existence of mislabelled samples. Gene-based males are defined 
by high RPS4Y1 and low XIST expression. Cont – control subjects (green), PD – Parkinson’s disease (orange). In brackets, the corresponding 
number of females (F) and males (M) reported in the original manuscript. XIST and RPS4Y1 genes were present in datasets GSE22491, but 
only RPS4Y1 was present in GSE18838. (a) Based on the sex-genes expression, dataset GSE22491 contains at two 2 mislabelled samples. Of 
notice, in the pooled sample (indicated by an arrow) containing equal amount of males and females, the two genes are expressed at similar 
levels. (b) This is the only dataset for which sex of individual samples was available on GEO. Red – GEO annotated females, blue – GEO 
annotated males. Based on the manuscript’s sample characteristics there should be 8F, 3M controls, and 2F, 15M PD. However, metadata 
provided on GEO, describes 5F, 6M controls, and 4F, 13M PD. Both of these annotations disagree with the gene-based sex of the samples 
(Cont – 8F, 3M, PD – 5F, 12M).

a

b
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Figure S3. Correlation of probesets corresponding to sex-specific genes. Probeset-probeset Pearson correlation of probesets 
corresponding to XIST, KDM5D and RPS4Y1 genes from all the datasets on in the current study. High correlation was observed between the 
two probesets corresponding to male specific genes. Six out of the seven XIS�T probesets showed very high positive correlation with each 
other, and high negative correlation with probesets corresponding to the male genes. Probeset 243712_at showed low positive correlation 
with other XIST probesets and relatively low negative correlation with male specific probesets and thus was excluded from the analysis.

Figure S2. Expression of probesets corresponding to the sex-specific genes XIST, KDM5D and RPS4Y1 in datasets analyzed in the 
current study. Each plot represents a separate dataset. The mismatched samples are highlighted in grey. For presentation interests, samples 
with undetermined gene-based sex were excluded. Each point represents a value of a single probeset in one sample. XIST – filled red circles, 
KDM5D filled black circles, RPS4Y1 – open black circles. X axis shows the predicted gene-based sex of each sample.

Click here to access the data.
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 Levi Waldron
School of Public Health, City University of New York, New York, NY, USA

The article is clear and to the point, and the abstract provides an adequate summary of the article, the
methods are adequately described, conclusions are balanced and justified, and data are available in a
usable format. I do have a few comments though:

I have a concern that the use of kmeans clustering assigns individuals to one of the two clusters
without any estimate of posterior probability of the assignment. Although the examples shown in
Figure 1 imply there is little uncertainty in these assignments, it is unclear whether that is always
the case, or whether there are some more ambiguous cases. It would be much more reassuring to
use a clustering algorithm that allows estimation of posterior probability of cluster assignment (such
as K-nearest neighbors in the "classify" package). Then I would immediately ask, are the biological
/ annotation mismatches all called with high confidence (say, >99%), or are some ambiguous (e.g.
49%)?
 
The article could have greater impact if the authors provided a ready-to-use tool for others to do
the same check. It doesn't have to be fancy; it could be provided even just by providing .RData
objects for the fitted classifer object used for the clustering.
 
The "How to replicate my analysis" section
on https://github.com/min110/mislabeled.samples.identification README.md is blank, and should
be filled in.
 
PURELY OPTIONAL: a paper of mine also points out the frequency of sample duplication,
including an instance of several dozen RNA aliquot mix-ups in TCGA [1], should you find it relevant
to cite.
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Department of Human Genetics & Department of Cognitive Neuroscinders Institute for Brain, Cognition
and Behaviour ences, Radboud University Medical Center , Nijmegen, Netherlands

This article by Toker  reports a retrospective biostatistical analysis of the data reported in 70 RNAet al.
expression studies to identify the possible misannotation of samples used in these studies. Their analysis
is based on the expression of gender-specific genes (XIST for females; KDM5D and RPS4Y1 for males).
Their analysis revealed apparent mismatches between the expression data and the annotated gender for
83 of 4160 samples (2%), encompassing 32 of the 70 studies (46%). This percentage is consistent with a
those of a previous analysis in cancer datasets (PUBMED: 26608184). While these figures are already
alarming, the actual number of mismatches is likely to be higher, because the gender-analysis can only
identify discrepancies based on a gender-mismatch and will not detect mislabelling of samples of the
same gender and case-control samples.

For most cases, the reason for the mismatches is not clear, but comparison of identical sample-data
presented in different publications revealed that sample mix-ups are likely to be involved.

The mislabelling of samples in transcriptomics studies have an immediate impact on the involved studies,
which often only have a modest sample size. In addition, also follow-up studies based on the results
reported in such studies can suffer from it. Therefore, the use of controls to check the identity of samples
is warranted. The gender-test presented in this work is a simple test that should become routine in
expression studies, another option is to use nucleic acid-based bar codes that can be added to the
sample early in the processing.

Some minor comments:
On page 4, second-last line: here 29/31 of the affected studies is mentioned. Shouldn't that be 32?
I hope I missed it, but certainly in a report as this one, the figures should be absolutely correct.
 
Some typo's in the legend: Figure 2, Stady 5 is Study 5; Supplementary Fig S1: Based on the
sex-genes expression, dataset GSE22491 contains samples.at two 2 mislabelled 
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 Leonard P. Freedman
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This is an excellent paper highlighting the importance of sample annotation as a critical contributor to
reproducible research. Using transcriptomics of sex-specific gene expression levels as an example, the
authors do a careful analysis to illustrate the issue of mislabeling. My one concern, which they candidly
acknowledge, is that nearly half of the samples appear to have only one error, which may lead many
readers to conclude that this actually a quite respectable error rate and that thus this is not really a big
problem. It was not entirely clear to me why, as the authors argue, that this is in fact 'the tip of the iceberg".

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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